Balancing Structure and Function at Hippocampal Dendritic Spines
نویسندگان
چکیده
منابع مشابه
Balancing structure and function at hippocampal dendritic spines.
Dendritic spines are the primary recipients of excitatory input in the central nervous system. They provide biochemical compartments that locally control the signaling mechanisms at individual synapses. Hippocampal spines show structural plasticity as the basis for the physiological changes in synaptic efficacy that underlie learning and memory. Spine structure is regulated by molecular mechani...
متن کاملStructure and function of dendritic spines.
Spines are neuronal protrusions, each of which receives input typically from one excitatory synapse. They contain neurotransmitter receptors, organelles, and signaling systems essential for synaptic function and plasticity. Numerous brain disorders are associated with abnormal dendritic spines. Spine formation, plasticity, and maintenance depend on synaptic activity and can be modulated by sens...
متن کامل[Structure-stability-function relationships of dendritic spines].
Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connections. By contrast, spines with small heads are motile and unstable and contribute to weak or sil...
متن کاملOverview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines.
There has been an explosion of new information on the neurobiology of dendritic spines in synaptic signaling, integration, and plasticity. Novel imaging and analytical techniques have provided important new insights into dendritic spine structure and function. Results are accumulating across many disciplines, and a step toward consolidating some of this work has resulted in Dendritic Spines of ...
متن کاملStructure-function relations in dendritic spines: is size important?
The recent use of novel high-resolution imaging methods of living neurons in vitro has led to a change in the view of the dendritic spine, from a stable, long-term memory storage device to that of a dynamic structure, which can undergo fast morphological changes over periods of hours and even minutes. While the functional significance of these changes in spine dimensions is still obscure, we ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annual Review of Neuroscience
سال: 2008
ISSN: 0147-006X,1545-4126
DOI: 10.1146/annurev.neuro.31.060407.125646